DOKUZ EYLUL UNIVERSTY, IZMIR / TURKEY ENGINEERING FACULTY DEPARTMENT OF MECHANICAL ENGINEERING

REPORT

Subject: Evaluation of Thermal Conductivity Coefficient **Company:** DBS Insaat Taah Kimya San ve Tic Ltd Sti

Material received by our department (Wall Mix G and Wall Mix W) were tested with the QTM machine, utilizing the hot wire method. Resulting average thermal conductivity values are given below:

Sample Name	Testing Environment Temperature (⁰ C)	Thermal Conductivity Coefficient (W/mK)
Wall Mix G	25	0,661
Wall Mix W	25	0,787

⁻ Thermal resistance (R value) = L/k, measured in $K \cdot m^2 \cdot W^{-1}$

According the average thermal conductivity values of Wall Mix G and Wall Mix W, thermal resistance values may calculate with different thicknesses like given examples below:

$R \ Values \ K \cdot m^2 \cdot W^{-1}$	Wall Mix G	Wall Mix W
0,5 cm thickness of application	$0,008 \text{ m}^2 \text{K/W}$	$0,006 \text{ m}^2 \text{K/W}$
1,0 cm thickness of application	$0.015 \text{ m}^2 \text{K/W}$	$0.013 \text{ m}^2\text{K/W}$
2,0 cm thickness of application	$0.030 \text{ m}^2\text{K/W}$	$0.025 \text{ m}^2 \text{K/W}$
2,5 cm thickness of application	$0.038 \text{ m}^2 \text{K/W}$	$0.032 \text{ m}^2 \text{K/W}$